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Motivation 
The 2018 ME72 competition “Tank Wars” was broken up into matches during which two teams 

fielded three robots each. Multiple “bases” were set up across the game field, also featuring a ramp, seesaw, 
and cardboard obstacles. Bases could be captured by robots pressing a button on the base, and teams were 
awarded points for the time spent controlling a base. 

 
Figure 1. Photo and Solidworks model of one of our team’s robots. The camera was placed in the 

centered square hole shown in the front plate. 
 

The beginning of each match featured a 40s autonomous period before the remaining five minutes of 
tele-operated play. Some teams attempted to use magnetometers or IMUs for localization, while others simply 
coded instructions to move forward during the autonomous period. Our team endeavored to use computer 
vision to position our robots in the ideal starting positions, with one robot aiming towards the edge of the 
nearest ground base and the other two aligning with the ramp and the far seesaw respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Ideal strategy for movement during autonomous period with original field layout. 
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Final Implementation 
We connected an Arducam camera module to a Raspberry Pi, and all processing was done on the Pi 

using SimpleCV. We used I2C communication between the Pi and the Arduino which was connected to our 
Xbox 360 remote receiver and the RoboClaw motor controller. 

The Arducam 5MP OV5647 Mini Camera Video Module was the least expensive camera module ($15) 
we could find that was compatible with the Raspberry Pi. The camera is most comparable to the Raspberry Pi 
V1 camera module. The sensor has a resolution of 2592 x 1944 pixels, but we chose to do our computation 
with 320 x 240 pixels for faster processing. The horizontal field of view is 53.5 degrees, and the vertical field 
of view is 41.4 degrees. The UV4L driver was used to integrate the stream with Linux. 

We chose to use an Arduino to interface with our Xbox 360 remote and motor controllers due to its 
ease of use. However, it does not have the processing capability in order to handle real-time image 
processing. The Raspberry Pi 3 Model B has a 1.2GHz 64-bit quad-core Broadcom BCM2837 processor, 
making it much better suited for computer vision applications.  

SimpleCV is a Python wrapper for OpenCV, a widely used open source computer vision library . 
Because we didn’t have any computer vision experience prior to this project, we chose to use SimpleCV, 
which has less features than OpenCV, but allows for faster prototyping. 

We implemented two different vision algorithms for positioning the robots aiming for the ground 
base and the ramp. The final algorithm for the ground base robot involved segmenting the distinctively 
colored lavender base and using the pixel bounds of the segmentation to determine how much the robot 
needed to turn to approach a specific edge of the base with enough clearance to avoid hitting it. The code is 
available on GitHub. 

The algorithm for approaching the ramp involved the robot turning with a pre-determined turning 
radius until it was oriented straight with respect to the ramp, as confirmed by the presence of horizontal lines 
surrounding the orange features of the ramp (Fig. 3). Once the robot was aligned, it moved forward or 
backward to be within 2 to 3 feet of the ramp to allow for the future possibility of hard-coding an ascent of the 
ramp. The code for this algorithm is also available on GitHub. 

 

  
Figure 3. Distinctive coloring of ramp with a horizontal orange stripe at the base. 

 
We initially communicated with the Arduino using a USB connection, but the RoboClaw’s serial 

communication interfered. Therefore, we switched to I2C, which was also easier to debug due to the 
availability of the serial port during testing without the motors. 

This video shows a robot operating with the ground base computer vision. 
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https://github.com/nehasunil/ME72CV/blob/master/GroundBase.py
https://github.com/nehasunil/ME72CV/blob/master/Ramp.py
https://www.youtube.com/watch?v=A8Ia-xgSQ5s


Development Process 
We did extensive testing with colorspaces to debug the discrepancies between what we could see, 

what the camera saw, and what the display showed. Furthermore, we determined that hue-based 
segmentation was more effective than RGB color-based segmentation because the former was flexible to 
changing lighting conditions. We also tested different vision strategies to determine which values we could 
obtain consistently and accurately, and found that we could segment blobs for distinctive hues and obtain 
accurate angles. Analysis on calibration images provided us with relationships between what the camera saw 
and how much the robot needed to turn. In the development process, we simplified the algorithms 
considerably by solving more specific problems.  
 

A. Colorspace Analysis 
 The first discrepancy we encountered was from SimpleCV importing RGB values from the camera, 
but handling them as if they were in BGR format, meaning the red and blue channels were flipped. After 
manually switching the channels back to the RGB format, we noticed that the display showed increased 
contrast in the green channel, making it impossible to visually distinguish cyan from light green or orange 
from pink. Further analysis on the raw values revealed the green channel contrast appeared only in the 
display and the colors were distinguishable based on their RGB values. The display discrepancy correlated to 
the intensity of the blue channel, suggesting that an internal auto white balance mechanism adjusted the 
appearance of the display, but not the RGB values themselves. 

Furthermore, data was collected during the day under dim natural lighting conditions with a color 
temperature of 5000K (similar to what would be seen during the competition in the shade), and at night with 
tungsten lighting with a color temperature of 3000K (Fig. 4). With the exceptions of white or extremely dark 
objects (black and brown), hue was a far more accurate measure for segmentation than RGB value for the 
changing lighting conditions. In the HSV colorspace, the H channel represents hue, the S channel corresponds 
to saturation, and the V channel relates to value, or the lightness of the color. A saturation of zero corresponds 
to gray, and a value of zero corresponds to black. The raw data and further analysis on colorspaces can be 
found in this informal write-up. The raw color calibration data, used for segmenting images by color, is 
summarized in Table 1. 
 
 

Figure 4. The expected and actual RGB and hue values during the day and at night. 
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https://drive.google.com/open?id=1t6Jh2lSPSPAP7BAQXDfywC4LmgoEAnv_
https://drive.google.com/file/d/1NcOwzPma__4b84mexOX9mqLsnzDI4pQR/view?usp=sharing


Table 1. Mean RGB and HSV and standard deviation of hue for the samples segmented  

 
 

The original competition guidelines specified that the bases would be painted yellow. However, since 
yellow (H=60 with RGB, H=180 with BGR correction) falls within the range of the grass hues, we requested 
that the bases be painted a more distinct hue that would not be present on competition field, and settled on 
lavender. 
 

B. Seesaw Line Analysis 
The first tests we ran with the field elements involved taking images of the seesaw from the camera 

mounted inside the robot at various positions and orientations to determine which values extracted from the 
image processing best indicated the original position and orientation. 
 

 
Figure 5. Steps for detecting lines on seesaw. The lines on the ramp are not detected due to the high 

threshold parameters of the findLines function. Future iterations of the binarized image use stricter 
thresholds and the erosion function to remove the noise visible in this segmentation. 
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We detected the lines on the seesaw (Fig. 5d) by taking a hue distance image with the orange of the 
seesaw as the hue parameter. The returned image (Fig. 5b) transforms pixels with a similar hue to black and 
scales the distances from 0 to 255 for a grayscale image. The image was then binarized so that all pixels under 
a specific value were set to a value of zero, and the rest were set to 255. This binarized image was then 
subtracted from the original image, resulting in Fig. 5c. We then used SimpleCV’s findLines function with a 
minimum line length and line quality threshold.  

The limited data set suggested a relationship between the pixel distance from the bottom of the 
image and the distance to the object. Moreover, the larger takeaway from this round of testing was that the 
segmentation quality between images affects the length and reported position of the lines, but the angles 
were consistently accurate. The pixel distance from the bottom of the image was better determined using the 
findBlobs function (groups similarly colored light pixels) on the segmented image than the findLines function. 
A more detailed analysis of the data can be found in this informal write-up.  

 
C. Obstacle Avoidance Considerations 

Initially, we were planning to implement an algorithm that allowed the robot to avoid any non-grass 
colored obstacle. We considered aiming for the highest visible point and calculating the turning angle as a 
function of the x and y position of the point we were aiming for using empirical testing (Fig. 6). 

 

 
Figure 6. Obstacle avoidance algorithm using highest visible point [1]. 

 
The algorithm first segments the ground, then horizontally erodes the image in consideration of the 

robot’s width. Since closer objects would require a greater horizontal pixel distance from the center for 
clearance than further objects, we conducted a new test to empirically determine a pixel location on the 
display for the robot to aim toward using the distance from the obstacle and the necessary clearance width. 
 

D. Clearance Calibration 
For this round of calibration, a distinctively colored blue box with a width of 4.625” and a depth of 

4.375” was offset to the left of the robot with just enough clearance so the robot would not touch it if it moved 
straight forward, which corresponded to offsetting the edge 9” from the center of the robot. The box was 
placed at incremental distances and the coordinates of the visible bottom corners were recorded. The data is 
available in this spreadsheet. We found the relationship between pixel distance from the bottom of the screen 
and physical object proximity (Fig. 7) and between proximity and the pixel clearance width needed (Fig. 8). 
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https://drive.google.com/open?id=1VHT9IrZUst1wt-iaWiQhMSHjDtrsc6v-
https://drive.google.com/file/d/1Ig764URkkcH-xIHSYQYdJkQuzFES1BtY/view?usp=sharing


 
Figure 7. Relationship between pixel distance from bottom of image and physical proximity in inches. 

Figure 8. Relationship between physical proximity in inches and horizontal pixel clearance needed 
with and without margin of 4.375”. 

 
We wrote out the code to determine the pixel location and send it to the robot. Instead of using the 

highest point, the algorithm first filtered blobs that were valid obstacles by checking the area, proximity, and 
whether there was enough clearance to pass it. Then the algorithm considered the closest two obstacles and 
chose a pixel location to aim towards. 

 We refrained from pursuing the corresponding servo angle calculations for this method because of 
the newly apparent issue that the depth of the object increases the apparent width of the object in the 
segmentation. Another version of the code addresses this issue using the known depth of the base, but we 
decided to recalibrate our algorithm using the base itself, a smaller clearance width, and direct use of the 
servo angle. Furthermore, at this point, we realized our robot could easily clear the cardboard bumps from 
most angles. Therefore, we decided to ignore the cardboard obstacles and focus on moving toward the base. 
 

E. Finalized Base Algorithm 
The purple base was easy to segment using hue. We used the erosion function to remove noise from 

the binarized image and the dilation function to both join broken parts of the segmentation and as a factor of 
safety. The largest region returned by SimpleCV’s findBlobs function applied to the segmented image was 
marked as the base, as long as the blob was larger than a specified area threshold (Fig. 9). 
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https://drive.google.com/file/d/17EwucwjLvqF_HQN-thUL-pzV3CE5x7Rf/view?usp=sharing


  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Still from video illustrating the real-time segmentation of the base. 
 
If the base was over four feet away, as determined by the distance between the bottom of the frame 

and the bottom of the base, the algorithm focused on aligning the right edge of the base with 3 inches of 
clearance using a limited servo angle range. When the robot was closer to the base, the algorithm used a 
surface fit model to map the X and Y pixel bounds to the necessary change in servo angle (Fig. 10). The robot 
aims for the right of the base by default, but an alternate version of the code allows the robot to aim for the 
left of the base. Both the vision code and the Arduino code are available on GitHub.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Surface fit of required servo angle to clear base for given maximum X and Y pixel 
bounds of base segmentation. The raw data is available in this spreadsheet. N = 27. 
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https://www.youtube.com/watch?v=A8Ia-xgSQ5s
https://github.com/nehasunil/ME72CV/blob/master/GroundBase.py
https://github.com/nehasunil/ME72CV/blob/master/DrivingRoboClaw_BaseAutonomy.ino
https://drive.google.com/file/d/1Qro6-7ziYilry-qoOaDuYcp-JLWDJD_b/view?usp=sharing


F. Finalized Ramp Algorithm 
As mentioned earlier, for the ramp/seesaw computer vision strategy, we found that line detection 

could provide us with accurate angles, but the quality of the segmentation affected positioning and length. 
Since the vertical stripes get warped when translated from 3D space, we found it difficult to use only the 
angles of the vertical stripes to determine relative position and orientation. The horizontal stripe on the 
ground however remains horizontal whenever the robot is oriented straight. We decided to use this fact to 
pursue autonomy for the ramp. The algorithm involved turning until an orange horizontal line was visible for 
multiple frames in a row, then positioning the robot so it was within 2 to 3 feet of the base of the ramp. We 
planned on hard-coding drive settings to autonomously climb the ramp if we had enough time. Both the 
vision code and the Arduino code is available on GitHub. 

A week before the competition, one of the two seesaws and one of the two ground bases were 
removed from the layout. With the adjusted map layout, autonomy for the seesaw would only be useful for 
half of the games and was more difficult to implement, so we decided to use the autonomous period to simply 
go straight. After observing the course in person the night before the competition, we realized that the ramp 
was positioned close enough to the starting region so that the ramp robot could move straight as well, so we 
focused on implementing computer vision for the robot pursuing the ground base.  

 
 

Conclusions 
We were not able to use computer vision on the day of the competition, ultimately because we didn’t 

have sufficient time to test our systems, and we were prioritizing general mobility over autonomy. We 
realized half an hour before our first match that we didn’t have the same wifi access on the field required for 
Virtual Network Computing (VNC), resulting in the need for regular access to the HDMI port on the Pi. This 
disrupted our plan for how we would secure the Pi, and the wires we had available weren’t long enough for 
the alternative solution. Furthermore, the way the competition was designed and modified made the strategic 
advantage from the autonomous capabilities of our robot rather negligible. We defaulted to simply moving 
forward during the autonomous period. Despite not being able to use it during the competition, the learning 
opportunity from implementing computer vision for the first time was well worth the effort. 

Avoiding a specific obstacle with known dimensions made the problem much easier to solve. In order 
to avoid general stationary obstacles, we would need to use OpenCV to get more information on the blob. For 
example, if we wanted to avoid any obstacle by veering right, we would need to know the lowest y-position of 
the blob at the maximum x-position of the blob. The clearance calibration code with additional servo angle 
calculations would be sufficient to implement this algorithm. 
 
 
Supplementary Materials 
 
Most of the following materials are referenced in the report. They are mentioned again here for accessibility: 

● Videos 
○ Computer Vision Demo 
○ ME 72 Robot 

● Code 
○ Base Vision 
○ Ramp Vision 

● Additional Data Analysis 
○ Colorspace 
○ Seesaw Lines  

● Raw Data Spreadsheets 
○ Color Calibration 
○ Clearance Calibration 
○ Servo Angle (Ground Base) Calibration 
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https://github.com/nehasunil/ME72CV/blob/master/Ramp.py
https://github.com/nehasunil/ME72CV/blob/master/DrivingRoboClaw_RampAutonomy.ino
https://www.youtube.com/watch?v=A8Ia-xgSQ5s
https://www.youtube.com/watch?v=ED_8Nejz5o8
https://github.com/nehasunil/ME72CV/blob/master/GroundBase.py
https://github.com/nehasunil/ME72CV/blob/master/Ramp.py
https://drive.google.com/open?id=1t6Jh2lSPSPAP7BAQXDfywC4LmgoEAnv_
https://drive.google.com/open?id=1VHT9IrZUst1wt-iaWiQhMSHjDtrsc6v-
https://drive.google.com/file/d/1NcOwzPma__4b84mexOX9mqLsnzDI4pQR/view?usp=sharing
https://drive.google.com/file/d/1Ig764URkkcH-xIHSYQYdJkQuzFES1BtY/view?usp=sharing
https://drive.google.com/file/d/1Qro6-7ziYilry-qoOaDuYcp-JLWDJD_b/view?usp=sharing
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