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Abstract

The ability to integrate complementary information from
vision and touch is a long-standing goal in robotic manip-
ulation. While vision provides global information about an
object’s position and orientation, touch provides local sig-
nals of contact geometry and forces, which are important to
supervise contact-rich interactions, especially in the pres-
ence of visual occlusions. In this work, we combine these
modalities for two different robotics-minded goals: object
classification and joint representation learning. To learn a
joint representation, the visual and tactile images are em-
bedded into a shared latent space using a cross-modal con-
trastive loss trained in a self-supervised manner. We imple-
ment and compare each network architecture with ResNets
and Vision Transformers. Ultimately, we obtained the high-
est classification performance with ResNets and visuotac-
tile data, achieving 95.3% classification accuracy. We were
also able to achieve semantic clustering in our learned joint
representations. Code, datasets, and trained weights are
available here.

A. Introduction

Humans seamlessly integrate complementary informa-
tion from vision and touch to enable more robust percep-
tion of the environment. While vision provides rich infor-
mation about the appearance and spatial layout of objects
in the scene, touch provides local information about con-
tact geometry and forces during object interaction. Tac-
tile information becomes especially useful in the presence
of occlusions, whether from other objects in clutter or the
gripper while grasping the object. We use Gelsight [15],
a camera-based tactile sensor for high resolution tactile in-
formation. Figure 1 demonstrates that vision can help with
initially grasping the USB connector and coarse alignment,
but the high resolution tactile imprint is much more useful
in a closed-loop controller to precisely plug it in. Conse-
quently, there has been extensive research in robotic manip-
ulation regarding effective ways to fuse visual and tactile
modalities [9].

At the same time, Transformers have been demonstrably
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Figure 1. Visual and tactile modalities in the robotic task of plug-
ging in a USB connector. While vision is useful when initially
grasping the cable and coarsely aligning it with the socket, the
gripper occludes the visual image, making precise object localiza-
tion difficult. The tactile signal, on the other hand, allows for high
resolution pose estimation that can be used in a closed-loop con-
troller. We use Gelsight sensors for tactile information and thresh-
old the depth reconstruction for a binary contact image.

effective at fusing multi-modal data including text, images,
and audio [ 1, 13]. The key advantage of the Transformer ar-
chitecture is the attention mechanism, which allows the net-
work to selectively focus on different portions of the input
sequence when computing the output representation. This
ability is especially helpful for global information process-
ing when parsing through large quantities of data. Convo-
lutional networks like ResNet [6] only have a field of view
the size of the kernel, while vision transformers can have a
much larger receptive field. In multi-modal representation
learning, cross-modal attention, in addition to self-attention,
provides a natural way to fuse modalities, which may con-
tain very disparate information.

We propose to leverage Transformers for visuotactile
representation learning by fine-tuning Vision Transformers
[4] with vision data (overhead depth images of the object)
and tactile data (Gelsight tactile sensing images at the con-
tact interface). We compare the performance of Transform-
ers with the same network architectures built with ResNet
encoders [60]. Specifically, we combine separate encoders
for object classification and learn a joint lower-dimensional
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representation using contrastive learning. Classification is
useful in manipulation tasks in order to identify objects of
interest in clutter and because different objects often re-
quire different manipulation skills or control parameters. A
fused visuotactile latent space representation can be used
to transfer state or goal specifications between modalities.
Moreover, the lower-dimensionality of this representation
compared to two input images simplifies policy learning for
tasks that are dependent on both modalities.

B. Related Work

Previous approaches of fusing visual and tactile data
combine overhead images with low-resolution, wrist-
mounted force/torque (F/T) tactile sensing. [©] uses sepa-
rate encoders for RGB images (a six-layer CNN), F/T sen-
sor readings, and proprioceptive inputs, then concatenates
the three feature vectors before passing it through a 2-layer
MLP to produce the final fused representation. They train
the representation in a self-supervised manner by predicting
action-conditioned optical flow, contact state, and temporal
alignment of the next state, given a current state representa-
tion/action pair. [3] uses similar self-supervised training sig-
nals as [9], but uses Vision Transformers [4] as the encoder
architecture instead. This change allows them to achieve
better performance in terms of sample efficiency and ac-
curacy, when doing reinforcement learning on top of the
representations to solve simulated manipulation tasks. Fi-
nally, [14] learns visuotactile representations of deformable
objects, to predict object dynamics when subject to external
forces.

In recent years, image-based tactile sensors [8, 10,

] have become an increasingly popular tactile sensing
paradigm, due to their high-resolution data stream. Image-
based tactile sensors provide information about the contact
geometry, normal, and shear forces, all of which are im-
portant signals to guide dexterous manipulation. [12] com-
bines RGB and tactile image representations using maxi-
mum covariance analysis for cloth texture recognition. [ 1]
learns a joint latent space by learning to synthesize RGB
images from tactile images, and vice versa, using a con-
ditional GAN. [7] learns a joint representation space for
image-based tactile sensor images and collocated RGB im-
ages using contrastive learning, and demonstrates its effi-
cacy in a range of tactile classification and control tasks for
deformable objects.

While vision data is easy to simulate, tactile data is more
challenging to generate. Therefore much of the previous
work uses data collected from real robots, which is time-
consuming and expensive. Since we can simulate tactile
signals relevant to our sensor [2], we are able to generate
our data entirely in simulation, which allows for a much
larger dataset. Compared to [7], which demonstrates how a
joint representation can be used in robotic tasks, our work
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Figure 2. Four objects in dataset. The dataset consists of an AUX
connector, pin, USB connector, and stud, all of similar size.

is a systematic exploration of architectures that fuse visual
and tactile modalities.

C. Methods

In our work, we train visual and tactile encoders for (1)

object classification and (2) creating a joint latent space
representation for downstream tasks. We implement both
architectures with ResNets (ResNet-50) as well as Vi-
sion Transformers (vit-base-patch16-224) pretrained on Im-
ageNet and compare performance.
Dataset. Our training dataset consists of 1,920 simulated
depth images and simulated contact images (binary masks
over the region of contact on the tactile sensor) for four dif-
ferent objects (Figure 2). The depth images are generated
from a virtual depth camera that captures the object CAD
model moving to discretized configurations on a grid with
5 degrees of rotational resolution, and Smm of translational
resolution. In order to obtain the tactile images, we thresh-
old the signal of another virtual depth camera in the orien-
tation of the gripper, as in [2]. The simulated depth images
and contact images are aligned such that the center pixel of
the depth image corresponds to the center of the gripper in
a corresponding grasp (Figure 3).

To generate the heldout validation dataset, we apply a
random pertubation (within £5 degrees and +5mm) to a
subset (640) of the configurations in the training set, then
render the vision and tactile images in the perturbed con-
figuration. This method of generating the validation set en-
sures that the validation set is within the training distribu-
tion, but cannot have been observed during training.

We implemented several data augmentations that we se-
lectively use when training different networks. Since we
are training in simulation, we have implemented transforms
relevant for sim2real transfer (added noise, random center
crop, and occlusions for the visual image and slight rota-
tions and morphological mask transformations for the tac-
tile image). Variants of our networks use a subset of these
transforms, as detailed below.

Classification network. For classification, we fine-tune



Figure 3. Simulated visuotactile data that we will use for train-
ing our models. The tactile data (right) consists of a white contact
mask over the region of contact on the tactile sensor when the grip-
per grasps the object in the depth image (left). The blue "I”” shape
over the object in the depth image is a graphical representation of
the gripper orientation with respect to the object.
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Figure 4. Visuotactile classification network architecture. En-
coders are implemented in both ResNet and Vision Transformer
versions.

tactile and vision encoders with an added linear classifica-
tion layer. (Figure 4). We concatenate the outputs of the two
encoders before passing it through the linear layer. We train
with the categorical cross entropy loss, AdamW optimizer,
batch size 64, and an exponential learning rate scheduler
initialized at 1 x 10~ for the ResNet encoders, and 1 x 10>
for the ViT encoders. We train for 50 epochs, and evaluate
the epoch with the lowest training loss against our valida-
tion set. Since the validation set contains purely simulated
data, we omit data augmentations relevant to sim2real trans-
fer when training the classification network.

We evaluate classification accuracy for three ablations of
the task: (1) visuotactile classification, (2) vision-only clas-
sification, and (3) tactile-only classification. For the vision-
only and tactile-only classification tasks, we pass only the
outputs from the vision and tactile encoders, respectively,
to the linear classification layer. We hypothesize that visuo-
tactile classification will outperform tactile-only classifica-

Figure 5. Data augmentations for introducing visual occlusions.
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Figure 6. Visuotactile joint representation network architecture.
Encoders are implemented in both ResNet and Vision Transformer
versions.

tion, but will provide only marginal benefit over vision-only
classification in the absence of occlusion. This is because
classification is more dependent on global object features,
which vision readily provides. Additionally, since tactile
information is especially useful in the case of occlusions,
we train and compare a vision and visuotactile network on
a dataset with the random occlusions included during data
augmentation (Figure 5).

Joint representation network. We train the learned joint
representation using an InfoNCE contrastive loss in a self-
supervised manner, since we have the ability to simulate
corresponding pairs of tactile and overhead depth images
(Figure 6). We use the same optimizer, learning rate sched-
uler, and hyperparameters as in the classification network
(see above).

We compare the joint representations obtained from no
data augmentation (same as classification network) and
sim2real data augmentation (random center crop for the
visual image and slight rotations and morphological mask
transformations for the tactile image). We hypothesize that
more data augmentation will lead to increased clustering of
the representations by object class. We evaluate this hypoth-
esis qualitatively by examining t_SNE plots of the resulting
representations.
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Figure 7. Test classification accuracies for vision-only, tactile-
only, and visuotactile classification with both ResNet and Vision
Transformer encoders. We also compare to a ResNet network
trained with visual occlusions on a new test dataset with visual
occlusions.

D. Results and Discussion

We experiment with network architecture for two sep-

arate tasks, object classification and joint representation
learning. For each task, we compare encoder architec-
ture with ResNet and Vision Transformers and use differ-
ent combinations of data augmentation to simulate different
problems.
Classification network. We ablate our visuotactile clas-
sification networks (with both ResNet and Vision Trans-
former encoders) with vision-only and tactile-only classi-
fication (Figure 7). We found that the tactile-only classi-
fication performed significantly worse than the vision-only
and visuotactile classification networks which had compa-
rable performance. For the single modality classification
networks, the Vision Transformer-based networks slightly
outperform the ResNet-based networks. Both visuotactile
networks had comparable performance, but the visuotac-
tile network based on ResNet encoders had the best per-
formance in our study with a test classification accuracy of
95.3%. AUX and stud were the two classes that created the
most confusion because they are similar in both visual and
tactile signals (Figure 8).

Tactile-only classification performing worse than the
other modalities is expected because the local information
this modality provides is less useful for object classifica-
tion. Therefore, visuotactile does not significantly outper-
form just vision. ResNet-50 has over 23 million trainable
parameters while ViT-Base has over 86 million parame-
ters. Since both networks were pre-trained on the same
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Figure 8. Confusion matrix for visuotactile object classification
with ResNet Encoders.

ImageNet dataset, and transformers have a larger receptive
field than convolutional neural networks as well as the self-
attention mechanism, we hypothesized that Vision Trans-
formers would outperform ResNets. However, this specific
classification problem might not be complex enough to see
a significant difference between the two architectures. Since
tactile classification is a harder problem, we do see a more
significant improvement in performance with Vision Trans-
formers.

Joint representation network. For the representation
learning task, we see that the learned representations for
both encoders show some clustering based on the object
class (Figure 9). The Vision Transformer joint represen-
tations appear to be more clustered by class. These were
trained in a self-supervised manner, independent of class,
so we see clustering based on local tactile features in the
ResNet model like larger corner features and small periodic
features (Figure 10). Convolutional networks are good at
picking up local patterns while Vision Transformers with
their larger receptive fields have more capacity for sorting
these objects by class without explicit labels.

The Vision Transformer embeddings also appear more
uniformly distributed on the unit sphere. The ResNet em-
beddings are of dimension 1K while the Vision Transformer
embeddings are of dimension 151K. The added representa-
tional power of the Vision Transformer may allow for this
more even distribution.

We do see more clustering in the representations learned
with data augmentation, but do not see clear clustering
based on the object class. Instead, visuotactile signals from
multiple objects are collapsed to the same point in the rep-
resentation space.
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Figure 9. T-SNE plots of visuotactile joint representations. The
colors correspond to the object type as labeled. The darker shades
are for the tactile embeddings while lighter shades are the visual
embeddings. The top row uses ResNet embeddings while the bot-
tom row uses Vision Transformer embeddings. The left column
uses no data augmentation (like our classification networks) while
the right column has data augmentation.

E. Conclusion

Visual and tactile modalities are complementary for sev-
eral tasks in robotic manipulation and this work fuses these
modalities for object classification and joint representation
learning. We did not find significant differences in perfor-
mance between ResNet and Vision Transformer encoders
for object classification, except for the more difficult prob-
lem of tactile-only object classification. The vision and
visuotactile networks performed similarly for the standard
dataset, but once we introduced occlusions, the visuotac-
tile classifier outperformed the vision-only classifier. Our
highest performing network, visuotactile classification with
ResNet, achieved a test classification accuracy of 95.3 %.

For the joint representation learning task, we found that
the network based on Vision transformers was able to more
evenly distribute the embeddings on the unit sphere because
of the more expressive power of the network. Furthermore,
the ResNet-based network seemed to cluster embeddings
based on local features while the Vision Transformer-based
network was able to cluster more based on class even with-
out access to class labels. This result is possible because of
the larger receptive field of Transformer networks compared
to convolutional networks, thus the Transformer can con-
nect features globally more effectively than convolutional
networks.

Future Work One limitation of our existing approach to
representation learning is that the constrastive loss only con-
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Figure 10. T-SNE plot of visuotactile joint representation for
ResNet encoder and non-augmented images with tactile images
sampled from major clusters. The colors correspond to the object
type as labeled. The darker shades are for the tactile embeddings
while lighter shades are the visual embeddings. The cluster on the
top left shows large corner features, likely from the USB image.
The cluster on the top right shows small periodic contacts. The
sampled images are likely from the pin object. The bottom cluster
seems to have less obvious patterns from our sample.

siders the relationship between samples in a given batch.
This can lead the loss function to jump around, and lead
to instability during training. In the future, we would like
to implement contrastive learning as a dynamic dictionary
with a queue and a moving averaged encoder, as in [5], to
improve performance.

We attempted adding cross-modal attention between the
encoders and final linear layer for our best classification
network architecture, however ran into compute limitations
when trying to implement this. Comparing the performance
gains of self attention with cross-modal attention is interest-
ing especially for our multi-modal classification task.

We would also like to see how the Sim2Real data aug-
mentations we have implemented affect classification per-
formance on the simulated test set as well as a test set gen-
erated on the real robot.

Eventually, we would like to implement our networks
for real robot tasks. For example, the classification task can
be used to identify objects in clutter if we add more ob-
jects in frame to the visual dataset. The joint representation
is a lower-dimensional representation that simplifies policy
learning for tasks like cable insertion, in-hand manipula-
tion, or tool use.



F. Individual Contributions

Both group members worked together for assembling
and debugging most components of this project. Specifi-
cally, Antonia contributed to dataset generation, the Trans-
formers architecture, training at scale, overall code devel-
opment, and visualization of results. Neha developed the
ResNet and overall classification and contrastive loss net-
work architectures, parameter tuning for training, and data
augmentation.
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